Lesson 1-6 Guided Notes

Standard

A2. F.BF.A.1 Write a function that describes a relationship between two quantities.

Objectives

I can solve one-, two-, and multi-step absolute value equations with no procedural errors. I can solve one-, two-, and multi-step absolute value inequalities with no procedural errors.

Key Concepts

- the distance from zero on the number line.

Written |x|

_____- a solution derived from an original equation

that is NOT a solution to the original equation.

Steps to solve an absolute value equation

Examples

- 1. Solve and check the absolute value equation.
 - a. (I do) |2x 1| = 5b. (We do) 3|x+2| - 1 = 8

- 2. Solve and check for extraneous solutions.
 - a. (They do) |3x + 2| = 4x + 5

3. Solve and graph the inequality. |A| < b

a. (I do)
$$|2x - 1| + 1 < 5$$

b. (We do) $\left|\frac{x - 3}{2}\right| + 2 < 6$

4. Solve and graph the inequality. $|A| \ge b$ a. (They do) $|2x + 4| \ge 6$ b. (You do) $\frac{2}{3}|6x - 2| \ge 4$

- 5. Write as an absolute value inequality. a. (I do) $1.3 \le h \le 1.5$ b. (I do) 4 + 0 + 1 + 1 + 0 + 3 + 3-3 - 2 - 1 = 0 + 1 + 1 + 0 + 3 + 3
- 6. (They do) In order to enter the kiddie rides at the amusement park, a child must be between the ages of 4 and 10. Let *a* represent the age of a child who may go on the kiddie rides. Write an absolute value inequality.