Name:	Date:	Period:
11-1 Permutations and Combinations		
State Standards		
A2. S.IC.A.1 Recognize the purposes of and differ and observational studies; explain how randomizat		eys, experiments,
Objective		
Count permutations and combinations		
Key Concepts		
	describes the m	nethod of using
multiplication to count.		
<i>n</i> P <i>r</i> -the number of	_of <i>n</i> items in a set arrange	d <i>r</i> items at a time.
(order matters)		
<i>n</i> C <i>r</i> -the number of	_of <i>n</i> items in a set chosen	<i>r</i> items at a time.
(order does <u>NOT</u> matter)		
$\underline{\hspace{1cm}} n! = n(n-1) \cdot \cdot 3 \cdot 2 \cdot 1$		
ake note		
Key Concept Fundamental Cou	nting Principle	
If event M can occur in m ways and is followed by event N that can occur in n ways,		
then event M followed by event N can occur in $m \cdot n$	•	
Example 3 pants and 2 shirts give $3 \cdot 2 = 6$ possible	le outfits.	

Examples

- 1. (I do) Many motor vehicle license plates are arranged with a series of 3 letters followed by a series of 3 numbers. How many possible license plates can there be of this style?
- 2. (I do) In how many ways can you file 12 folders one after another in a drawer?

3.	(We do) Ten students are in a race. First, second and third place will earn medals. In how many ways can 10 runners finish first, second, third (no ties allowed)?
4.	(We do) Permutation or Combination? A teacher divides the class into 8 groups for a project. She decides to display 4 of the projects. In how many different ways can the teacher select the projects for display?
5.	(They do) Permutation or Combination? In a raffle, three winners are chosen. The first ticket drawn wins \$100, the second wins \$50, the third wins \$10. In how many different ways can you draw 3 winning tickets out of a total of 25 raffle tickets?
1.	Practice 11-1: Complete your assignment on a separate sheet of paper. Show all work. You have five shirts and four pairs of pants. How many different ways can you arrange your shirts and pants into outfits?
2.3.	To create a passcode, you need to first choose a letter and then, three single-digit numbers. How many different passcodes can you create? Evaluate a. $10!$ b. $_6P_3$ c. $_7C_5$
4. 5 .	How many different nine-player batting orders can be chosen from a baseball team of 16? Explain the difference between permutations and combinations.