4-3 Modeling with Quadratic Functions

Standards

A2.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
A2.S.ID.B. 2 Represent data on two quantitative variables on a scatter plot and describe how the variables are related. Fit a function to the data; use functions fitted to data to solve problems in the context of the data.

Examples

1. (I do) Consider the points $(0,0),(-1,-2)$, and $(1,6)$.
a. Create a model for the points in standard form? Would a linear or quadratic model be appropriate for this situation? Explain.
b. Compare both models. Verify the model that fits best by visual inspection of the graph.
2. (We do) A player throws a basketball toward the hoop. The basketball follows a parabolic path through the points $(2,10),(4,12)$, and $(10,12)$.
a. Apply a regression model to create a quadratic function to model this situation.
b. Analyze the function. What would the solutions to the function represent in this situation?
3. (They do) The table shows a meteorologist's predicted temperatures for this particular day.
a. What is a quadratic model for the data?

time	temperature
8 am	52
10 am	64
12 pm	72
2 pm	78
4 pm	81
6 pm	76

b. Use your model to predict the high temperature for the day.

You do Practice 4-3: Complete your assignment on a separate sheet of paper. Show all work.

1. Find an equation in standard form of the parabola passing through the points.
a. $(1,-3),(2,0),(3,9)$
b. $(3,-1),(2,-5),(4,-5)$
2. A player hits a tennis ball across the court and records the height of the ball at different times, as shown in the table below.
a. Find a quadratic model for the data.
b. Use the model to estimate the height of the ball at 4 seconds.
c. What is the ball's maximum height?

Time (s)	Height $(\mathbf{f t})$
0	5.5
1	6.0
2	5.5
3	4.0

