5-2 Polynomials, Linear Factors, and Zeros (Part 1)

Standards

A2.A.APR.A. 2 (formerly A-APR.A.3_Identify zeros of polynomials when suitable factorizations are available and use the zeros to construct a rough graph of the function defined by the polynomial.
A2.F.IF.A. 2 (formerly F-IF.B.6) Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
A2.F.IF.B. 5 (formerly F-IF.C.9) Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).

Key Concepts

The following are equivalent statements about a real number b and a polynomial $\mathrm{P}(x)$

- $x-b$ is a \qquad of the polynomial $\mathrm{P}(x)$
- b is a \qquad of the polynomial function $\mathrm{y}=\mathrm{f}(x)$
- b is a \qquad of the polynomial equation $\mathrm{f}(x)=0$
- b is an \qquad of the graph $\mathrm{y}=\mathrm{f}(x)$

Examples

1. (I do) Write $3 x^{3}-18 x^{2}+24 x$ in factored form.
2. (We do) Find the zeros for $y=(x-1)(x+1)(x+3)$. Then graph the function. State the domain and range.
3. (They do) Factor. Then find the zeros.

a. $y=x^{3}-2 x^{2}-15 x$
b. $y=2 x^{3}-5 x^{2}-3 x$
4. (They do) Write a polynomial with the given zeros.
a. $-2,-2,2$
b. $-3,1,2,3$
5. Given the function $f(x)=x^{2}-5 x-1$, determine the average rate of change of the function over the interval $-2 \leq x \leq 5$

You do Practice 5-2 Part 1: Complete your assignment on a separate sheet of paper. Show all work.

1. Find the zeros for each function.
a. $y=x(x-6)$
b. $y=(2 x+3)(x-1)$
c. $y=x^{3}-4 x^{2}-21 x$
2. Write a polynomial function in standard form with the zeros $x=-2,1,-1$.
3. Error Analysis. Your friend says a function with zeros 3 and -1 is $f(x)=x^{2}+2 x-3$. Is your friend correct? If not find and correct the error.
