Name:
Date: \qquad Period: \qquad
6-5 Solving Square Root and Other Radical Equations Part 1 Standards

A2.A.REI.D. 6 Explain why the x -coordinates of the points where the graphs of the equations $\mathrm{y}=\mathrm{f}(x)$ and $\mathrm{y}=\mathrm{g}(x)$ intersect are the solutions of the equation $\mathrm{f}(x)=\mathrm{g}(x)$; find the approximate solutions using technology.
A2.A.REI.A. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
A2.A.REI.A. 2 Solve rational and radical equations in one variable and identify extraneous solutions when they exist.
A2.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and rational and exponential functions.
A2.A.CED.A. 2 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Key Concepts

- an equation that has a variable in a radicand or has a variable with a rational exponent.

It is possible to get extraneous solutions for square root and other radical equations, so

Examples

(I do) Solve.

1. $-10+\sqrt{2 x+1}=-5$
2. $3(x+1)^{\frac{3}{5}}=24$
3. $3(x+1)^{\frac{2}{3}}=12$
4. (They do) For the meteor crater in Arizona, the formula $d=2 \sqrt[3]{\frac{V}{0.3}}$ relates the diameter d of the rim (in meters) to the volume V (in cubic meters). What is the volume of the Meteor Crater if the diameter is 1.2 m ?

6-5 Solving Square Root and Other Radical Equations Part 2

(We do) Solve. Check for extraneous solutions.
4. $\sqrt{x+2}-3=2 x$
5. $\sqrt{2 x+1}-\sqrt{x}=1$

You do: Practice 6-5: Complete your assignment on a separate sheet of paper. Show all work.

1. Solve.
a. $\sqrt{x+2}-2=0$
b. $\sqrt{2 x+3}-7=0$
c. $2+\sqrt{3 x-2}=6$
2. Solve.
a. $\quad 2(x-2)^{\frac{2}{3}}=50$
b. $(6 x-5)^{\frac{1}{3}}+3=-2$
3. Solve. Check for extraneous solutions.
a. $\sqrt{4 x+5}=x+2$
b. $\sqrt{-3 x-5}-3=x$
4. A cylindrical can holds 28 in. ${ }^{3}$ of soup. If the can is 4 in . tall, what is the radius of the can to the nearest tenth of an inch? (Hint:V=$\left.=\pi r^{2} h\right)$
5. Reasoning. If you are solving $4(x+3)^{\frac{3}{4}}=7$, do you need to use the absolute value to solve for x ? Why or why not?
6. Find the solutions of $\sqrt{x+2}=x$, are there any extraneous solutions? How do you know?
