Name:
Date: \qquad Period: \qquad

8-3 Rational Functions and Their Graphs

Standards

A2. F.IF.A. 1 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship.
A2. F.IF.B. 3 Graph functions expressed symbolically and show key features of the graph, by hand and using technology

Key Concepts

- a function that you can write in the form $f(x)=\frac{P(x)}{Q(x)}$, where $Q(x) \neq 0$
\qquad - a graph that has no breaks, jumps, or holes.
\qquad - a graph that has jumps, breaks or holes.
\qquad - the point at which the graph is not continuous $(x=a)$
removable discontinuity at $x=a$.

KeyConcept Types of Discontinuity

A function has an infinite discontinuity at $x=c$ if the function value increases or decreases indefinitely as x approaches c from the left and right. Example

A function has a jump discontinuity at $x=c$ if the limits of the function as x approaches c from the left and right exist but have two distinct values. Example

A function has a removable discontinuity if the function is continuous everywhere except for a
hole at $x=c$.
Example

- to find a horizontal asymptote, compare the degree of the numerator to the degree of the denominator.
- If degree of numerator < degree of denominator, then the horizontal asymptote is $y=0$
- If degree of numerator $=$ degree of denominator, then the horizontal asymptote is $y=$ ratio of leading coefficients.
- If degree of numerator > degree of denominator, then there is no horizontal asymptote.

Examples

1. (I do) Consider the rational function $y=\frac{x+4}{x^{2}-x-12}$
a. What is the domain of the rational function?
b. Identify the points of discontinuity. Are the points of discontinuity removable or nonremovable?
c. What are the x - and y-intercepts?
2. (We do) Consider the rational function $y=\frac{2 x}{x^{2}+12}$
a. What is the domain of the rational function?
b. Identify the points of discontinuity. Are the points of discontinuity removable or nonremovable?
c. What are the x - and y-intercepts?
3. (They do) Consider the rational function $y=\frac{x^{2}-4}{x+2}$
a. What is the domain of the rational function?
b. Identify the points of discontinuity. Are the points of discontinuity removable or nonremovable?
c. What are the x - and y-intercepts?
4. (I do) What are the vertical asymptotes for the graph?
a. $\quad y=\frac{(x+3)}{(x-3)(x+2)}$
b. $y=\frac{(x+7)}{\left(x^{2}+9 x+14\right)}$
5. (We do) What are the horizontal asymptotes for the graph?
a. $y=\frac{-4 x+3}{2 x+1}$
b. $y=\frac{x-2}{x^{2}-2 x-3}$
c. $y=\frac{x^{2}}{4 x-1}$
6. (They do) Graph the rational function $y=\frac{x+1}{x^{2}-x-6}$

Step 1: Find HA

Step 2: Factor

Step 3: Find VA

Step 4: Find x - and y-intercepts

Step 5: Graph and get additional points on the graph

7. (They do) You work at a pharmacy that mixes different concentrations of saline. The pharmacy has a supply of two different concentrations, 0.5% and 2%. The function $y=\frac{100(0.02)+x(0.005)}{100+x}$ gives the concentration of the mixture after adding x milliliters of the 0.5% solution to 100 milliliters of the 2%. How many milliliters of the 0.5% solution must you add for the combined solution to have a concentration of 0.9% ?

(You do) Practice 8-3: Complete your assignment on a separate sheet of paper. Show all work.

1. State the domain, find any points of discontinuity for each rational function, state the x - and y intercepts. Are there any vertical asymptotes? Are the points of discontinuity removable or nonremovable?
a. $y=\frac{x+5}{x^{2}+9 x+20}$
b. $y=\frac{x-1}{(x+1)^{2}}$
c. $y=\frac{x^{2}-x-2}{3 x^{2}-7 x+2}$
2. Find the horizontal asymptotes.
a. $y=\frac{x-3}{x+5}$
b. $y=\frac{x-3}{x^{2}+5 x+6}$
c. $y=\frac{x^{2}-1}{2 x+2}$
3. Sketch the graph of each rational function $y=\frac{x+3}{x^{2}-7 x+6}$
4. (See example 7, use the same function) How many milliliters of the 0.5% solution must be added to the 2% solution to get a 0.65% solution?
