Name: \qquad Date: \qquad Period: \qquad

11-1 Add \& Subtract Polynomials

Standard

- B.A.APR.A. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Objective

- SWBAT write polynomials in standard form IOT add \& subtract them.

Key Concepts

\qquad - a mathematical expression consisting of more than two terms.
\qquad - a mathematical expression consisting of one term.
\qquad - a mathematical expression consisting of two terms.
\qquad - the number part of a term.
\qquad - a term consisting of a single number.
\qquad - terms consisting of the same variables and exponents but may have different coefficients.
\qquad - a way of ordering the terms of a polynomial with the greatest power of one of these variables to the least power.

Examples

1. (I do) Write the polynomial $-x^{2}+2 x^{3}-x+1$ in standard form. Then classify it according to its degree and number of terms.
2. (We do) Add.
a. $(3 x+8)+(-4 x-9)$
b. $\left(8 a^{2} b+6 a b^{2}\right)+\left(4 a^{2} b-3 a b^{2}\right)$
3. (We do) Subtract $s^{2}+3 s-4$ from $3 s^{2}-5 s-3$
4. The cost of the materials for the inner packaging of a new product is determined by the expression $10 x^{2}+8 x y+y^{2}$. The cost of the outer packaging is $4 x^{2}-3 x y+2$. Find the total cost of the packaging.

Exercises

Simplify.

1. $(3 b-6)+\left(4 b^{2}-6 b+10\right)$
2. $(4 a+b)+(2 a-3 b)$
3. $\left(7 m^{2}+8 m n-9\right)+\left(2 m^{2}-10 m n+1\right)$
4. $\left(-3 c^{2}+12 c d-7\right)+\left(5 c^{2}-9 c d+d\right)$
5. $\left(7 a^{2}-3 a+5\right)-\left(-a^{2}+4 a-10\right)$
6. $\left(5 b^{2}+7 b c-9 c^{2}\right)-\left(b^{2}+9 b c+2 c^{2}\right)$
7. $\left(7 t^{2}-5 t\right)-\left(-4 t^{2}+3 t-7\right)$
8. $\left(7 x^{2}+x y-3 y^{2}\right)-\left(-4 x^{2}+7 x y+12\right)$
9. $\left(8 j^{2}-4 j+10\right)+\left(2 j^{2}-8 j+2\right)$
10. $\left(-4 m^{2}+2 m n-n^{2}\right)-\left(2 m^{2}+3 m n-18\right)$
11. $\left(8 k^{3}-6 k^{2}+12\right)-\left(3 k^{3}+5 k+10\right)$
12. $\left(5 a b^{2}-2 a b+4 a^{2} b\right)+\left(-4 a b+2 a^{2} b-8\right)$

Name: \qquad Date: \qquad
\qquad

11-2 Multiply by a Monomial

Standard

- B.A.APR.A. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Objective

- SWBAT write polynomials in standard form IOT multiply them.

Examples

1. (I do) Simplify
a. $(8 a)(3 b)$
b. $\left(2 x^{2}\right)(-5 x)$
2. (We do) Simplify
a. $3 v\left(v^{2}+v+1\right)$
b. $12\left(a^{2}+3 a b^{2}-3 b^{2}-10\right)$
3. (They do) List 3 possible dimensions for a rectangle with area $12 x^{2} y$.

Lesson 11-2 Independent Practice/Lesson Check

Exercises

Simplify.
\qquad

1. $a(a b c)$
2. $\left(4 m^{2}\right)\left(8 m n^{2}\right)$ \qquad
3. $3 m^{2}(m-2 n)$ \qquad
4. $-9 d(d+6)$ \qquad
5. $(8 x y)\left(9 y^{2} z\right)$ \qquad
6. $3 b(b-8)$ \qquad
7. $x^{2}(a-b)$ \qquad
8. $-2 a^{2} b\left(3 a b^{2}-7 b\right)$ \qquad
9. $4 x\left(x^{2}+3 x-6\right)$
10. $7 n^{2}\left(8 m^{2} n-7 m n-6 n\right)$

Name: Date: \qquad Period: \qquad

11-3 Divide \& Find Factors

Standard

- B.A.APR.A. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Objective

- SWBAT extract factors IOT factor polynomials into a monomial factor and a polynomial factor.

Key Concepts

\qquad - a mathematical expression consisting of all the common factors.

Examples

1. (I do) Find the factors.
a. $4 x+2$
b. $2 x+6 x^{2}$
2. (We do) Find the greatest common factor or GCF of $15 x y^{3}$ and $3 x^{2} y^{2}$
3. (We do) Factor to find the GCF and its paired factor.
a. $7 r^{2}+3 r s+2 r t$
b. $h^{2} j k+j k^{2} l-3 k l m$
4. (They do) List the dimensions for a rectangle with area $18 x^{2} y z+6 x z$
5. Write, simplify and factor an expression for each perimeter below.

Lesson 11-3 Independent Practice/Lesson Check-

Exercises

Find the GCF for each polynomial. Then find its paired factor.

1. $9 x+12$ \qquad 2. $a^{2}+4 a$ \qquad
2. $7 a^{3}-14 a^{2}$ \qquad 4. $15 y^{4}+12 y^{2} z$ \qquad
3. $8 x^{5}-5 x^{4}+2 x^{3}$ \qquad 6. $8 x^{10}-24 x^{5}+6 x^{4}$ \qquad
4. $27 y^{5}-9 y^{3}$ \qquad 8. $a^{3} b^{2}-3 a^{4} b$ \qquad
5. $9 y^{4}-3 y^{3}+y^{2}$ \qquad 10. $15 k^{3}+5 k+10$ \qquad
6. $12 x^{4}+6 x^{2}-3 x$ \qquad 12. $2 f^{3}-18 f^{2}+8 f$ \qquad
7. $16 m^{5} n+4 m n-8 m n^{2}$

Name: \qquad Date: \qquad Period: \qquad

11-4 Multiply Binomials \& Polynomials

Standard

- B.A.APR.A. 1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Objective

- SWBAT multiply binomials IOT expand them.

Key Concepts

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

Examples

1. (I do) Apply the foil method to multiply $(x+a)(2 x+3 b)$
2. (I do) The rectangular cover art for a new product has a length of $(x+1)$ and a width of $(x+5)$. Find the area of the cover art. Remember $A=l w$. Use the box method.
3. (We do) Multiply the perfect square $(10 x+3 y)(10 x-3 y)$.
4. (We do) Multiply $(3 x-4)\left(3 x^{2}+6 x-2\right)$
5. Multiply $(2 x-1)(x-4)(x+5)$

-----------------------------Lesson 11-4 Independent Practice/Lesson Check---------------------------

Simplify

1. $(2 r+2)(3 r-1)$
2. $(12 x+4 y)(10 x-7 y)$
3. $(4 k+1)(k+3)-4 k^{2}$
4. What is the formula for the volume of a rectangular prism? Use it to find the volume below.
5. Write, expand and simplify expressions for the volumes of the rectangular prisms.
a.

b.

