Name: \qquad Date: \qquad Period: \qquad

2-2 The Coordinate Plane, Relations and Functions

Standards

- B.F.IF.A.1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $\mathrm{y}=f(x)$.
- B.F.IF.B. 3 Recognize functions as mappings of an independent variable into a dependent variable.

Objective

- SWBAT will determine whether a relation is a function IOT identify the domain and range of a relation.
- SWBAT use the coordinate plane IOT represent mathematical relationships using graphs.

Key Concepts

\qquad - pairs of numbers are graphed on this system.
\qquad - the 4 sections created by both the x-axis and y-axis.
\qquad - the horizontal line that divides the coordinate plane into a top half and a bottom half.
\qquad - the vertical line that divides the coordinate plane into a left half and a right half.
\qquad - the point at which the x-axis and y-axis cross.
\qquad - the unique \qquad and \qquad that tell the location of a point.
\qquad - set of ordered pairs.
\qquad - the set of x-coordinates in a relation.
\qquad - the set of x-coordinates in a relation.
\qquad - the diagram that shows the relationship between the domain and range in a relation. - a relation in which each element of the domain is paired with exactly one element of the range.
\qquad - the variable whose values make up the domain.
\qquad - the variable whose values make up the range.
\qquad - the test used to determine whether a relation is a function.

Examples

1. (I do) Determine whether the relation is a function. State the domain and range.
a.

\boldsymbol{x}	\boldsymbol{y}
-3	4
3	-1
4	-1
4	3

b.

c. $F=\{(0,3),(-1,3),(0,3),(2,3)\}$
d.

2. (I do) State the domain and range. Determine whether the graph is a function.
a.

b.

3. (We do) Evaluate the function.
a. $f(x)=3 x+2 ; f(6)$
b. $g(x)=x^{2}-1 ; g(-1)$
4. (They do) The air conditioner in a car should produce air that is 26 degrees below the temperature outside the car.
a. Write a formula for the inside temperature (T) as a function of the outside temperature x.
b. What is the temperature inside the car when the outside temperature is $92^{\circ} \mathrm{F}$?
-Lesson 2-2 Independent Practice/Lesson Check-

Exercises

Graph each point on the coordinate plane at the right.

1. $A(2,4)$
2. $B(-3,5)$
3. $C(6,0)$
4. $D(0,-3)$
5. $E(7,-6)$
6. $F(1,-1)$
7. $G(-2,3)$
8. $H(-6,-5)$
9. $I(-3,-4)$

Give $f(x)=3 x-2$, evaluate each function.
10. $f(-1)$ \qquad
11. $f(3)$ \qquad
13. $f(-3)$ \qquad 14. $f\left(\frac{1}{3}\right)$
12. $f(0)$
\longrightarrow
15. $f(5)$ \qquad
Determine if each relation is a function. Give the domain and range.
16.

17.

x	-1	4	3	3
y	3	5	4	-2

Name: \qquad Date: \qquad Period: \qquad

2-3 Linear Functions

Standards

- B.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve real world problems.

Objective

- SWBAT write an equation symbolically IOT express a contextual problem.
- SWBAT will graph linear functions IOT solve linear equations by making a table.

Key Concepts

\qquad - a function whose graph is a line
\qquad - represents a linear function where a solution is any ordered pair (x, y) that makes the equation true.
\qquad - the point in which a line crosses the y-axis
\qquad - the point in which a line crosses the x-axis
\qquad - values of x for which $\mathrm{f}(x)=0$. Also called x-intercept.

Examples

1. (I do) Graph $y=2 x+3$

2. (We do) Graph $y=-1$

3. (I do) Graph $x=2$

4. (We do) Graph $y+3=-\frac{1}{2} x+4$

5. (We do) Graph $y=|x-3|$

6. (We do) Graph $y=-|x|+2$

7. (We do) Given $h(x)=|x+2|$, find each value.
a. $h(0)$
b. $h(-3)$
8. (They do) The relationship between the scales used to measure temperature in degrees Fahrenheit and degrees Celsius can be represented by the equation $F=\frac{5}{9} C+$ 32. Graph the function and determine the Fahrenheit temperature that is equivalent to $35^{\circ} \mathrm{C}$.

Lesson 2-3 Independent Practice/Lesson Check

Exercises

Graph each function.

1. $y=x$

2. $y=2 x-3$

Evaluate $h(x)=|-x+6|$ for the graph value of x.
3. $h(0)$ \qquad 4. $h(-2)$ \qquad 5. $h(5)$ \qquad 6. $h(-10)$ \qquad

Evaluate $g(x)=|x-5|$ for the given value of x.
7. $g(-5)$ \qquad
8. $g(6)$ \qquad 9. $g(-9)$ \qquad 10. $g(15)$

Name: \qquad Date: \qquad Period: \qquad

2-5 Solving Multi-Step Equations Standards

- B.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve real world problems.
- B.A.CED.A. 2 Create equations in two or more variables to represent relationships between quantities.

Objective

- SWBAT rewrite literal equations and formulas IOT use them in context.
- SWBAT use properties of equality IOT solve equations.

Key Concepts

 can solve for any variable "in terms of" the other variables.| Property | Definition |
| :--- | :--- |
| Reflexive | $a=a$ |
| Symmetric | If $a=b$, then $b=a$ |
| Transitive | If $a=b$ and $b=c$, then $a=c$ |
| Substitution | If $a=b$, then b may replace a in any expression. |
| Addition/ Subtraction | If $a=b$, then $a+c=b+c$ and $a-c=b-c$. |
| Multiplication/ Division | If $a=b$ and $c \neq 0$, then $a c=b c$ and $\frac{a}{c}=\frac{b}{c}$ |

Examples

1. (I do) Solve for h. $P=2 b+2 h$ 2. Solve and Check. $x+5=2 x-3$
2. Solve and Check. $6(2 x-1)=-36+6$
3. Solve and Check. $6 c+3-2 c=1+5 c$
4. (We do) Solve and Check. $15 n-4(4+3 n)=-5(2 n-5)+11$
5. (We do) Translate "when 12 is decreased by twice a number, the result is -14 " into an equation. Then solve.
6. (They do) Translate "when the sum of twice a number and 3 is multiplied by 5 , the result is the same as decreasing the product of 6and the number by 1 " into an equation. Then solve.
7. (They do) Shawn bought 3 CD'S and a DVD. The CD's were all the same price and the DVD was three less than twice the cost of one CD. The total cost of the 3 CD's and the DVD was $\$ 42$.
a. Find the cost of each CD.
b. Find the cost of the DVD.

ExERCISES

Solve each equation and check the solution.

1. $2 c+3=15 \square$
2. $-14=4 d+6$ \qquad
3. $2(b+3)=2$ \qquad
4. $5-2 x=x-19$ \qquad
5. $-3 s+4=-2$ \qquad
6. $19=25-3 w$
7. $5 y+3=2 y+12 \longrightarrow$
8. $7 t-5+3 t=15$ \qquad
9. $1-6 r=-4-3 r \square$
10. $4(0.5-w)=-18$ \qquad

Translate each sentence into an equation. Then solve.
13. Six more than twice a number is 16 . Find the number.
14. Four times a number decreased by 12 is 8 . Find the number.
15. When 15 is decreased by three times a number, the result is 21 . Find the number.

Name: \qquad Date: \qquad Period: \qquad

2-6 Solving Inequalities

- B.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve real world problems.
- B.A.REI.D. 5 Solve a linear inequality using multiple methods and interpret the solution as it applies to the context.

Objective

- SWBAT will solve and graph an inequality in one variable IOT interpret the solution of a linear inequality.

Key Concepts

$\mathrm{x}>4$	x is greater than 4	
$\mathrm{x} \geq 4$	x is greater than or equal to 4	
$\mathrm{x}<4$	x is less than 4	
$\mathrm{x} \leq 4$	x is less than or equal to 4	

Examples

1. (I do) What inequality represents the graph?

2. Solve and graph the solution. $2 x \geq 20$
3. Solve and graph the solution. $-60 s>8$

We do
4. Solve and graph the solution. $-\frac{3}{7} r \leq 21 \quad$ 5. Solve and graph the solution. $-3<\frac{x}{6}$
6. Solve and graph the solution. $-2 k+9 \geq 1$
7. Solve and graph. $4(3 d+1)-5 d \leq 8-2(5 d+2)$
8. Of the students surveyed at Cordova High School, fewer than eighty-four said they have never purchased an item online. This is about one eighth of those surveyed. How many students were surveyed?
9. A reporter estimates that $\frac{2}{3}$ of the hours (h) spent on a story increased by 15 hours is less than 27 hours. What values are possible for h ?

Exercises

Solve each inequality and graph the solution on a number line. Use your own paper.

1. $2 d+1 \geq 13$
2. $14 \leq 5 a+4$ \qquad
3. $-10-6 z \leq 20$ \qquad
4. $\frac{1}{2} q+4>1$ \qquad 8. $5-2 k \leq-19$
5. $5 n-6 \leq 12-n$ \qquad 10. $8-z>2 z-10$
6. $8-3 r<-4$ \qquad
7. $-5 k-3>12$ \qquad
8. $6 r-4<-10$ \qquad
\qquad

Name: \qquad Date: \qquad Period: \qquad

2-7 Solving Linear Inequalities

- B.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve real world problems.
- B.A.REI.D. 5 Solve a linear inequality using multiple methods and interpret the solution as it applies to the context.

Objective

- Students will solve and graph an inequality in two variables IOT interpret the solution of a linear inequality.

Examples

1. (I do) Graph $y \leq 4 x$

2. (We do) Graph $4 x+5>25$

3. (I do) Graph $y>\frac{3}{2} x-4$

4. (I do) Graph $4 x+3 y \geq-6$

5. (We do) Write the inequality represented by the graph.

Lesson 2-7 Independent Practice/Lesson Check---------------------------

Exercises

Solve each inequality and graph its solution on the number line.

1. $3 x-2 \leq 7$ \qquad

2. $9<5 x-1$ \qquad

Graph each inequality on the coordinate plane.
3. $2 x-2 y \geq-2$

4. $y<2 x-3$

