N	ame:
Τđ	ame.

2-2 The Coordinate Plane, Relations and Functions

Standards

- B.F.IF.A.1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
- B.F.IF.B.3 Recognize functions as mappings of an independent variable into a dependent variable.

Objective

- SWBAT will determine whether a relation is a function IOT identify the domain and range of a relation.
- SWBAT use the coordinate plane IOT represent mathematical relationships using graphs.

Key Concepts

	- pairs of numbers are graphed on this system.
	- the 4 sections created by both the <i>x</i> -axis and <i>y</i> -axis.
top half and a bottom half.	- the horizontal line that divides the coordinate plane into a
left half and a right half.	- the vertical line that divides the coordinate plane into a
	- the point at which the <i>x</i> -axis and <i>y</i> -axis cross.
that tell the location of a po	- the unique and pint.
	- set of ordered pairs.
	- the set of <i>x</i> -coordinates in a relation.
	- the set of <i>x</i> -coordinates in a relation.
and range in a relation.	- the diagram that shows the relationship between the domain
with exactly one element o	- a relation in which each element of the domain is paired f the range.
	- the variable whose values make up the domain.
	- the variable whose values make up the range.

_____- the test used to determine whether a relation is a function.

Examples

(I do) Determine whether the relation is a function. State the domain and range.
 a. b.

c.
$$F = \{(0, 3), (-1, 3), (0, 3), (2, 3)\}$$

d.

2. (I do) State the domain and range. Determine whether the graph is a function.

3. (We do) Evaluate the function. a. f(x) = 3x + 2; f(6)

b.
$$g(x) = x^2 - 1; g(-1)$$

- 4. (They do) The air conditioner in a car should produce air that is 26 degrees below the temperature outside the car.
 - a. Write a formula for the inside temperature (*T*) as a function of the outside temperature x.

b. What is the temperature inside the car when the outside temperature is 92°F?

-----Lesson 2-2 Independent Practice/Lesson Check------

Name:	
1 vanit.	

2-3 Linear Functions

Standards

• B.A.CED.A.1 Create equations and inequalities in one variable and use them to solve real world problems.

Objective

- SWBAT write an equation symbolically IOT express a contextual problem.
- SWBAT will graph linear functions IOT solve linear equations by making a table.

Key Concepts

_______- a function whose graph is a line
_______- represents a linear function where a solution is any ordered pair (*x*, *y*) that makes the equation true.
______- the point in which a line crosses the *y*-axis
______- the point in which a line crosses the *x*-axis

- values of x for which f(x) = 0. Also called x-intercept.

Examples

5. (We do) Graph y = |x - 3|

- 7. (We do) Given h(x) = |x + 2|, find each value.
 a. h(0)
 b. h(-3)
- 8. (They do) The relationship between the scales used to measure temperature in degrees Fahrenheit and degrees Celsius can be represented by the equation F = ⁵/₉C + 32. Graph the function and determine the Fahrenheit temperature that is equivalent to 35°C.

2-5 Solving Multi-Step Equations Standards

- B.A.CED.A.1 Create equations and inequalities in one variable and use them to solve real world problems.
- B.A.CED.A.2 Create equations in two or more variables to represent relationships between quantities.

Objective

- SWBAT rewrite literal equations and formulas IOT use them in context.
- SWBAT use properties of equality IOT solve equations.

Key Concepts

- an equation that uses at least 2 letters as variables. You can solve for any variable "in terms of" the other variables.

Property	Definition
Reflexive	a = a
Symmetric	If $a = b$, then $b = a$
Transitive	If $a = b$ and $b = c$, then $a = c$
Substitution	If $a = b$, then b may replace a in any expression.
Addition/ Subtraction	If $a = b$, then $a + c = b + c$ and $a - c = b - c$.
Multiplication/ Division	If $a = b$ and $c \neq 0$, then $ac = bc$ and $\frac{a}{c} = \frac{b}{c}$

Examples

- 1. (I do) Solve for h. P = 2b + 2h2. Solve and Check. x + 5 = 2x - 3
- 3. Solve and Check. 6(2x 1) = -36 + 6 4. Solve and Check. 6c + 3 2c = 1 + 5c
- 5. (We do) Solve and Check. 15n 4(4 + 3n) = -5(2n 5) + 11

- 6. (We do) Translate "when 12 is decreased by twice a number, the result is -14" into an equation. Then solve.
- 7. (They do) Translate "when the sum of twice a number and 3 is multiplied by 5, the result is the same as decreasing the product of 6and the number by 1" into an equation. Then solve.
- (They do) Shawn bought 3 CD'S and a DVD. The CD's were all the same price and the DVD was three less than twice the cost of one CD. The total cost of the 3 CD's and the DVD was \$42.
 - a. Find the cost of each CD.
 - b. Find the cost of the DVD.

-----Lesson 2-5 Independent Practice/Lesson Check-----

Exercises

Solve each equation and check the solution.

1.	2c + 3 = 15	2. $-3s + 4 = -2$
2	-14 - 4d + 6	4 19 - 25 - 2m
э.	-14 - 4u + 0	4. $19 - 23 - 3w$
5.	2(<i>b</i> + 3) = 2	6. $5y + 3 = 2y + 12$
7.	5 - 2x = x - 19	8. $7t - 5 + 3t = 15$
9.	2 - 3(m + 4) = 2	10. $1 - 6r = -4 - 3r$
11.	$\frac{1}{3}(6p-12) = 5$	12. $4(0.5 - w) = -18$
Tra	nslate each sentence into an equation. Th	hen solve.
13.	Six more than twice a number is 16. Fin	d the number

- 14. Four times a number decreased by 12 is 8. Find the number.
- 15. When 15 is decreased by three times a number, the result is 21. Find the number.

Name:	Date:	Period:	

2-6 Solving Inequalities

- B.A.CED.A.1 Create equations and inequalities in one variable and use them to solve real world problems.
- B.A.REI.D.5 Solve a linear inequality using multiple methods and interpret the solution as it applies to the context.

Objective

• SWBAT will solve and graph an inequality in one variable IOT interpret the solution of a linear inequality.

Key Concepts

x > 4	x is greater than 4	
$\mathbf{x} \ge 4$	x is greater than or equal to 4	
x < 4	x is less than 4	
$\mathbf{x} \leq 4$	x is less than or equal to 4	

Examples

1. (I do) What inequality represents the graph?

- 2. Solve and graph the solution. $2x \ge 20$ 3. Solve and graph the solution. -60s > 8

We do

- 4. Solve and graph the solution. $-\frac{3}{7}r \le 21$ 5. Solve and graph the solution. $-3 < \frac{x}{6}$
- 6. Solve and graph the solution. $-2k + 9 \ge 1$
- 7. Solve and graph. $4(3d + 1) 5d \le 8 2(5d + 2)$
- 8. Of the students surveyed at Cordova High School, fewer than eighty-four said they have never purchased an item online. This is about one eighth of those surveyed. How many students were surveyed?
- 9. A reporter estimates that $\frac{2}{3}$ of the hours (*h*) spent on a story increased by 15 hours is less than 27 hours. What values are possible for *h*?

-----Lesson 2-6 Independent Practice/Lesson Check------

Solve each inequality and graph the solution on a number line. Use your own paper.

Name:	Date:	Period:

2-7 Solving Linear Inequalities

- B.A.CED.A.1 Create equations and inequalities in one variable and use them to solve real world problems.
- B.A.REI.D.5 Solve a linear inequality using multiple methods and interpret the solution as it applies to the context.

Objective

• Students will solve and graph an inequality in two variables IOT interpret the solution of a linear inequality.

Examples

1. (I do) Graph $y \le 4x$

3. (We do) Graph 4x + 5 > 25

4. (I do) Graph $4x + 3y \ge -6$

5. (We do) Write the inequality represented by the graph.

					R	17			\square	\mp	
					Ľ			-	H	+	+
*					t		7		H	+	
							1			1	
					4				\square	+	-
		1000				89 P					-
	.8		99P	2	0	2			4		15
	6	4		2	0	ŕ		-	4		6.5
	6	4		2	0 2			-	4		6.5
	6	4		2	0 2 14				4		6.5
	6	*		2	0 2 1 4 4				4		6 .9

-----Lesson 2-7 Independent Practice/Lesson Check------

