Name: \qquad Date: \qquad Period: \qquad

6-1 Slope of a Line and Slope-intercept Form

Standards

- B.S.ID.C. 4 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data
- B.F.IF.C. 4 Graph linear, quadratic, absolute value, and piecewise functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated ones.
- B.N.Q.A. 1 Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

Objective

- SWBAT use linear equations IOT solve problems in context .
- SWBAT write the slope-intercept form of an equation IOT graph the equation.

Key Concepts

formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
\qquad - the point in which the graph crosses the x-axis.
\qquad - the point in which the graph crosses the y-axis.
\qquad $-y=m x+b$, where $m=$ slope and $(0, b)$ is the y -intercept.

Examples

1. Find the slope of AB containing the points $\mathrm{A}(-1,2)$ and $\mathrm{B}(3,-4)$.
2. Find the slope of XY.
3. Graph the line that passes through $G(1,1)$ and has a slope of $-\frac{3}{4}$.

4. Find the slope and y-intercept.
a. $y=\frac{2}{3} x-4$
b. $2 x+3 y=6$
5. Write the equation for the line with the given slope and y-intercept.
a. $m=2, b=-4$
b. $\mathrm{m}=0, \mathrm{~b}=1$
c. $\mathrm{m}=\frac{3}{4}, \mathrm{~b}=0$
6. Graph the line
a. $-x+y=3$
b. $2 x+5 y=-10$

7. Production figures for an assembly plant are represented by a line with a slope of $\frac{1}{2}$ and a y-intercept of -1 . Find the equation of the line. Then draw the graph of the line.

ExERCISES

Find the slope of each line.
1.

2.

3.

4.

Find the slope of the line containing the given points.
5. $A(-2,2)$ and $B(0,4)$ \qquad
6. $R(5,-1)$ and $S(2,3)$ \qquad
7. $M(4,-8)$ and $N(6,-1)$ \qquad
8. $F(-5,5)$ and $G(-1,6)$ \qquad
Find the slope and y-intercept for each line.
9. $y=2 x+1$ \qquad 10. $-4 x+y=2$ \qquad
11. $y=-1$ \qquad 12. $3 x-3 y=6$ \qquad

Write an equation of the line with the given slope and y-intercept.
13. $m=-1, b=3$ \qquad
14. $m=4, b=-2$ \qquad

Name: \qquad Date: \qquad Period: \qquad

6-3 Write Equations for Lines

Standards

- B.S.ID.C. 4 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- B.A.CED.A. 3 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

Objective

- SWBAT write equations for lines in point-slope form IOT solve problems in context.

Key Concepts

\qquad - $y-y_{1}=m\left(x-x_{1}\right)$ where $m=$ slope and $\left(x_{1}, y_{1}\right)$ is a point on the line.
\qquad $-A x+B y=C$ where A, B and C are integer coefficients.

If you know	You can write an equation in
1. The slope m and y-intercept b 1. Slope-intercept form: $y=m x+b$ 2. A point $\left(x_{1} y_{1}\right)$ and the slope m 2. Point slope form: $y-y_{1}=m\left(x-x_{1}\right)$ 3. Two points $\left(x_{1} y_{1}\right)$ and $\left(x_{2} y_{2}\right)$ 3. Point slope form: $y-y_{1}=m\left(x-x_{1}\right)$ or $y-y_{2}=m\left(x-x_{2}\right)$ where $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ 4. Same as 3. The graph with points $A\left(x_{1} y_{1}\right)$ and $B\left(x_{2} y_{2}\right)$	

Examples

1. Write an equation of the line with a slope of -2 and passes through the point $\mathrm{P}(-1,3)$.
2. Write an equation of the line through $\mathrm{A}(1,-3)$ and $\mathrm{B}(3,2)$.
3. Write the equation of the line shown.

4. Write the equation $y=-\frac{1}{2} x+1$ in standard form.
5. Write the equation of the line parallel to $y=-\frac{1}{3} x+1$ containing $\mathrm{R}(1,1)$.
6. Write the equation of the line perpendicular to $y=-\frac{1}{3} x+1$ containing $\mathrm{R}(1,1)$.
7. The temperature of water at the freezing point is $0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$. The temperature of water at the boiling point is $100^{\circ} \mathrm{C}$ or $212^{\circ} \mathrm{F}$. Use these two data points to find an equation to convert the temperature from Celsius to Fahrenheit.

Lesson 6-3 Independent Practice/Lesson Check-

ExERCISES

Write an equation of the line with the given slope and y-intercept.

1. $m=-2, b=4$ \qquad 2. $m=-\frac{2}{5}, b=1$ \qquad
2. $m=-5, b=-2$ \qquad 4. $m=1, b=\frac{3}{4}$ \qquad

Write an equation of the line with the given information.
5. $m=0, \mathrm{C}(-1,4)$ \qquad 6. $m=\frac{1}{3}, W\left(\frac{1}{2}, 2\right)$ \qquad
7. m is undefined, $T(5,-6)$ \qquad
8. $m=-4, S\left(\frac{3}{5},-\frac{1}{5}\right)$ \qquad
9. $A(3,-1)$ and $B(2,4)$ \qquad
10. $M(-6,4)$ and $N(0,-5)$ \qquad
11. $R(6,-1)$ and $S(-3,0)$ \qquad 12. $F(1,-8)$ and $G(3,2)$ \qquad
13.

14.

15. Parallel to $x+y=4$ and passes through $M(3,2)$. \qquad

Name: \qquad Date: \qquad Period: \qquad

6-4 Systems of Equations

Standards

- B.A.REI.C. 3 Solve and explain the solutions to a system of equations using a variety of representations including combinations of linear and non-linear equations.
- B.A.CED.A. 2 Create equations in two or more variables to represent relationships between quantities.

Objective

- SWBAT use graphical means IOT solve a linear system of equations.
- SWBAT analyze a system IOT determine the number of solutions.

Key Concepts

\qquad - two linear equations with the same two variables
\qquad - the point of intersection of the lines in the system.
\qquad - systems that have lines intersecting at one point.
\qquad - systems in which the lines coincide and every point on the line is a solution. This system has infinitely many solutions.
\qquad - systems that have lines that do not intersect.

Examples

1. (I do) Solve the system by graphing.
a. $\left\{\begin{array}{l}y=-2 x+1 \\ y=-3 x+4\end{array}\right.$
b. $\left\{\begin{array}{l}y=\frac{1}{2} x+3 \\ 2 y=x-2\end{array}\right.$

2. (We do) Use technology to graph. $\left\{\begin{array}{c}4 x+2 y=8 \\ 6 x+3 y=12\end{array}\right.$

3. (We do) Determine whether $(2,1)$ is a solution of the system $\left\{\begin{array}{l}5 y=3 x-1 \\ 2 x-3 y=1\end{array}\right.$
4. (We do) Determine the number of solutions for the system. Do not graph.
a. $\left\{\begin{array}{l}4 x+5 y=3 \\ 3 x-2 y=8\end{array}\right.$
b. $\left\{\begin{array}{c}x+y=3 \\ 2 x+2 y=6\end{array}\right.$
c. $\left\{\begin{array}{c}4 x+5 y=3 \\ y=-\frac{4}{5} x-1\end{array}\right.$
5. (They Do) The sum of 2 numbers is -3 . Their difference is 13 . Find the numbers by writing a system of equations and solving by graphing.

ExERCISES

Determine the solution of each system of equations.
1.

2.

Solve each system of equations by graphing. Use your own paper.
3. $\left\{\begin{array}{l}4 x-y=5 \\ 2 x+y=7\end{array}\right.$
4. $\left\{\begin{array}{l}3 x+y=-2 \\ x=y-2\end{array}\right.$ \qquad
5. $\left\{\begin{array}{l}y=5 x+2 \\ x=6-3 y\end{array}\right.$
6. $\left\{\begin{array}{l}\frac{x}{2}+\frac{y}{3}=1 \\ y=\frac{x}{4}-4\end{array}\right.$
7. $\left\{\begin{array}{l}3 x+2 y=4 \\ y=2 x+9\end{array}\right.$
8. $\left\{\begin{array}{l}x=y-6 \\ \frac{x}{2}+\frac{y}{2}=-3\end{array}\right.$
9. The sum of two numbers is 2 . Their difference is 10 . Find the numbers. \qquad
10. One number is three times another number. The difference of the two numbers is
2. Find the numbers. \qquad

Name: \qquad Date: \qquad Period: \qquad

6-5 Solving Systems of Equations by Substitution

Standards

- B.A.REI.C. 3 Solve and explain the solutions to a system of equations using a variety of representations including combinations of linear and non-linear equations.
- B.A.CED.A. 2 Create equations in two or more variables to represent relationships between quantities.

Objective

- SWBAT use substitution IOT solve a linear system of equations.

Key Concepts

- If $a=b, a$ may replace b in any mathematical expression.

This method can be used to solve systems of equations.

Examples

1. (I do) Solve the system using substitution.
a. $\left\{\begin{array}{c}3 x-y=6 \\ x=-2 y+2\end{array}\right.$
b. $\left\{\begin{array}{c}x+3 y=-9 \\ -5 x-2 y=-7\end{array}\right.$
2. (We do) Solve the system using substitution.
a. $\left\{\begin{array}{l}2 x+3 y=6 \\ 4 x+6 y=6\end{array}\right.$
b. $\left\{\begin{array}{c}4 x-2 y=10 \\ -2 x+y=-5\end{array}\right.$
3. (They do) An appliance store delivers large appliances using vans and trucks. When loaded, each van holds 4 appliances and each truck holds 6 appliances. If 42 appliances are delivered by 8 full vehicles, how many vans and trucks are used?

--

ExERCISES

Solve each system of equations by the substitution method. Check the solution.

1. $x+y=4$
$2 x-y=5$ \qquad
2. $\left\{\begin{array}{l}5 x+y=0 \\ x-2 y=11\end{array}\right.$ \qquad
3. $\left\{\begin{array}{l}-4 x+2 y=8 \\ 2 x+2 y=6\end{array}\right.$ \qquad
4. $\left\{\begin{array}{l}2 x+\frac{1}{2} y=25 \\ -x-y=10\end{array}\right.$ \qquad
5. Ryan has 10 coins consisting of dimes and nickels worth $\$ 0.70$. How many dimes and how many nickels does he have? \qquad
6. Brooke spent $\$ 94.92$ at the music store. She bought some cassette tapes for $\$ 9.99$ each and some CDs for $\$ 12.99$ each. How many cassette tapes and how many CDs did she buy if she bought 8 all together? \qquad

Name: \qquad Date: \qquad Period: \qquad

6-6 Solving Systems of Equations by Elimination (Adding \& Multiplying)

Standards

- B.A.REI.C. 3 Solve and explain the solutions to a system of equations using a variety of representations including combinations of linear and non-linear equations.
- B.A.CED.A. 2 Create equations in two or more variables to represent relationships between quantities.

Objective

- SWBAT use elimination IOT solve a linear system of equations.

Key Concepts

 inverses to cancel a variable.
Examples

1. (I do) Solve the system using elimination.
a. $\left\{\begin{array}{c}x-y=-5 \\ x+y=1\end{array}\right.$
b. $\left\{\begin{array}{c}2 x+7 y=-5 \\ -5 x+7 y=-12\end{array}\right.$
2. (We do) Solve the system using elimination.
a. $\left\{\begin{array}{c}3 x-4 y=10 \\ 3 y=2 x-7\end{array}\right.$
b. $\left\{\begin{array}{c}3 x-5 y=-1 \\ 6 x=-2 y+10\end{array}\right.$
3. (They do) Rodrick sold 25 movie tickets for a total of $\$ 132$. If each adult ticket sold for $\$ 6$ and each children's ticket sold for $\$ 4$. How many of each kind did he sell?

ExERCISES

Solve each system of equations. Check the solution.

1. $\left\{\begin{array}{l}2 x-y=4 \\ x+2 y=7\end{array}\right.$
2. $\left\{\begin{array}{l}3 x-y=4 \\ 4 y=-2 x+12\end{array}\right.$
3. $\left\{\begin{array}{l}-x+3 y=8 \\ y=2 x-4\end{array}\right.$ \qquad
4. $x=3 y-6$ $6 y=x+3$
5. $\left\{\begin{array}{l}5 x-y=4 \\ 3 x=-2 y+\end{array}\right.$ $3 x=-2 y+18$
\qquad
6. $\left\{\begin{array}{l}6 x+6 y=6 \\ x+y=1\end{array}\right.$ \qquad
7. $10 x+5 y=20$
$x=y+2$ \qquad
8. The perimeter of a rectangle is 24 in . The length is twice the width. Find the dimensions.

Name: \qquad Date: \qquad Period: \qquad

6-7 Solving Systems of Equations using Matrices

Standards

- B.A.REI.C. 3 Solve and explain the solutions to a system of equations using a variety of representations including combinations of linear and non-linear equations.
- B.A.CED.A. 2 Create equations in two or more variables to represent relationships between quantities.

Objective

- SWBAT use matrices IOT solve a linear system of equations.

Key Concepts

\qquad - a rectangular array of elements.

Examples

1. (I do) Solve the system using matrices.
a. $\left\{\begin{array}{c}2 x-y=4 \\ -3 x+2 y=5\end{array}\right.$
b. $\left\{\begin{array}{c}x+3 y=4 \\ -2 x+y=-1\end{array}\right.$
2. (We do) Solve the system using a matrix $\left\{\begin{array}{c}3 x-y=2 \\ 2 y=-x-4\end{array}\right.$
3. (They do) Enterprise Rental charges $\$ 25$ per day plus $\$ 0.35$ per mile. Avis charges $\$ 35$ per day plus $\$ 0.25$ per mile. Carter determines the trip he needs to take will cost $\$ 230$ with Enterprise and $\$ 250$ with Avis. How many miles and for how many days will Carter's trip be?

Exercises

For each system of equations, a. write the matrix equation and \mathbf{b}. solve using the method of determinants.

1. $\left\{\begin{array}{l}-3 x+4 y=12 \\ x-2 y=6\end{array}\right.$
a.

b. \qquad
2. $\left\{\begin{array}{l}5 x+y=10 \\ x-y=5\end{array}\right.$
a.

b. \qquad
3. $\left\{\begin{array}{l}x-y=16 \\ x+y=10\end{array}\right.$
a. \qquad b. \qquad
4. $2 x-2 y=8$ $-x+3 y=12$
a. \qquad
b. \qquad

Name: \qquad Date: \qquad Period: \qquad

6-8 Linear Systems of Inequalities

Standards

- B.A.CED.A. 1 Create equations and inequalities in one variable and use them to solve real world problems.
- B.A.REI.C. 3 Solve and explain the solutions to a system of equations using a variety of representations including combinations of linear and non-linear equations.
- B.A.REI.D. 5 Solve a linear inequality using multiple methods and interpret the solution as it applies to the context.

Objective

- SWBAT model a real-world situation using systems of linear inequalities.
- SWBAT use graphs to solve a system of linear inequalities.

Key Concepts

\qquad - two or more inequalities with the same variables.
\qquad - the intersection of the graphs of the inequalities.

Examples

1. (I do) Determine whether the given ordered pair is a solution to the given system of inequalities.
a. $(2,-5) ;\left\{\begin{array}{l}4 x-y \geq 5 \\ 8 x+5 y \leq 3\end{array}\right.$
b. $(1,2) ;\left\{\begin{array}{c}x+y \geq 3 \\ 3 x-y<1\end{array}\right.$
2. (We do) Graph the solution set to the system.
a. $\left\{\begin{array}{c}2 x-3 y \leq 6 \\ x+2 y<2\end{array}\right.$
b. $\left\{\begin{array}{l}y \geq 2 x+5 \\ x-\frac{1}{3} y<1\end{array}\right.$

3. (We do) Write a system of inequalities for the graph.

4. (They do) Jasmine needs to earn at least $\$ 100$ this week. She earns $\$ 6$ per hour doing gardening and $\$ 8$ per hour as a part-time receptionist. She has only 18 h available to work during the week. Write and graph a system of linear inequalities that models the weekly number of hours Jasmine can work at each job and how much money she needs to earn.

Lesson 6-8 Independent Practice/Lesson Check--

ExERCISES

Write a system of linear inequalities for each graph.
1.

2.

Graph the solution set of each system of linear inequalities on another sheet of paper.
3. $\left\{\begin{array}{l}x>2 \\ y>4\end{array}\right.$
4. $\left\{\begin{array}{l}x<y+1 \\ 3 \leq-x-y\end{array}\right.$
5. $\left\{\begin{array}{l}x+y \geq 0 \\ y-x<4\end{array}\right.$

