Name: \qquad Date: \qquad
\qquad

1-1 The Language of Mathematics

Standard

- B.N.RN.A.1. Use rational and irrational numbers in calculations and in real world context.

Objective

- SWBAT develop a thorough understanding of sets and set notation IOT understand set notation and how to use symbols to describe sets.

Key Concepts

\qquad - If A and B are sets, then A is a subset of B , written $\mathrm{A} \subseteq \mathrm{B}$ when each element of A is also an element of B.
\qquad - a set that contains a finite number of elements.
\qquad - a set that contains an infinite number of elements.
\qquad or \qquad - a set that contains no elements.
\qquad - a symbol (usually a letter) standing for an unknown value in an equation.
\qquad - statement that two numbers or expressions are equal.
\qquad - any sentence that contains one or more variables.
\qquad - the set of all possible values for the variable in an open
sentence.
\qquad - the set of all elements in the replacement set that makes the sentence true.

Examples

1. (I do) Write " the set of natural numbers" using the following notation:
a. set-builder notation
b. roster notation
2. (I do) Write the following using symbols
a. set A contains elements 2, 4, 6 and 8 .
b. set B is a subset of set A.
c. x is an element of set C .
d. 12 is not an element of $\{1,3,5,7\}$.
e. set D is the null set or empty set.
3. (We do) Rewrite $\{0, r\} \in\{r\}$ so that it is correct.
4. (They do) Determine all possible subsets of the set $\{a, b, c\}$.
5. (They do) Determine which of the values -2 and 4 are solutions to the equation $4 x+3=$ 19.
6. (They do) Josh's earnings equaled the sum of Aimee's and twice Nora's earnings. Josh earned $\$ 104$ and Aimee earned $\$ 32$. Using the equation $104=32+2 x$ and the replacement set $\{32,36,40\}$ for x. Find the amount Nora earned.
-----------------------------Lesson 1-1 Independent Practice/Lesson Check

ExERCISES

Use the following sets $A=\{2,4\}, B=\varnothing, C=\{2,4,6,8,10\}$, and $D=\{-2,-1,0,1,2\}$ for Exercises 1-8. Tell if each statement is true or false.

1. $1 \in D$ \qquad 2. $1 \in A$ \qquad 3. $-2 \in D$ \qquad 4. $-3 \in D$ \qquad
2. $A \subset C$ \qquad 6. $B \subset D$ \qquad 7. $C \subset A$ \qquad
3. $B \subset A$ \qquad
4. Write all the possible subsets of the set $\{x, y\}$.

Define each set using roster notation.
10. odd numbers greater than 5
11. even negative numbers with a value less than -3

Which of the given values is a solution of each equation?
12. $6-m=4 ;-2,2$ \qquad 13. $4 n+6=30 ; 6,9$ \qquad
14. $b+7=-8 ;-1,-15$ \qquad 15. $j \div 12=2 ; 6,24 \square$

Name: \qquad Date: \qquad
\qquad

1-2 Real Numbers

Standard

- B.N.RN.A.1. Use rational and irrational numbers in calculations and in real world context.

Objectives

- SWBAT develop a thorough understanding of both rational and irrational numbers IOT make both historical and concrete connections between irrational numbers and the real world.
- SWBAT identify and graph real numbers IOT perform operations with them.

Key Concepts

\qquad - The number on the number line corresponding to a point.
\qquad - The distance from zero to a given point.

Real Numbers

Irrational	Rational Can be represented as a fraction (ratio) 1 $\sqrt{9}$ 0
Non-terminating decimal with no pattern $\begin{gathered} \pi \\ \mathrm{e} \\ \sqrt{2} \\ 1.24519764 \ldots \end{gathered}$	

Examples

1. (I do) To which set does each number belong:
a. 7
b. -0.8
c. $\sqrt{29}$
d. $\sqrt{144}$
2. (I do) Graph the numbers $-4, \frac{3}{2}, \sqrt{5},-\frac{12}{5}$, and π on the number line.
3. (We do) Graph the following sets on the number line.
a. the set of integers from -2 to 3 , inclusive
b. the set of real numbers from -2 to 3 inclusive
c. $\{$ all real numbers less than or equal to 2$\}$
d. $\{$ all real numbers greater than -2$\}$
4. (They do) Evaluate the expression when $m=-5$.
a. $-m$
b. $-(-m)$
c. $|m|$
d. $-|-m|$
\qquad

Exercises

Tell whether each statement is true or false.

1. $\sqrt{2}$ is a rational number.
2. -42 is an integer.
3. 0 is a natural number. \qquad 4. $-\frac{3}{5}$ is an integer. \qquad
4. 213 is a whole number.
5. 0.31131113 is an irrational number. \qquad
Graph each set of numbers on a number line.
6. $\left\{\frac{1}{5},-1 \frac{3}{8}, \sqrt{2}, 3.9\right\}$

7. real numbers less than or equal to -1

Evaluate each expression where $b=-0.8$.
9. $-b$ \qquad 10. $-(-b)$ \qquad 11. $|b|$ \qquad
12. $-|b|$ \qquad
13. $|-b|$ \qquad
14. $-|-b|$ \qquad

Name: \qquad Date: \qquad
\qquad

1-3 Union \& Intersection of Sets

Standard

- B.N.RN.A.1. Use rational and irrational numbers in calculations and in real world context.

Objective

- SWBAT use math symbols to describe sets IOT describe the relationships among sets and elements of sets.

Key Concepts

\qquad - is formed by joining all the elements of one set with those of others.
\qquad - is formed with the elements that are in common in one or more sets.
\qquad -uses circles inside a rectangle to represent sets and set operations.
\qquad or \qquad -typically labeled as set U or represented by a rectangle in a Venn diagram.
\qquad - the subset of all elements of U that ae not elements of set A.
\qquad - two sets whose intersection is empty.
\qquad - an inequality that combines two inequalities.

Examples

1. (I do) Write "the union of sets A and B" using the following notation:
a. Set-builder notation
b. Symbolized notation
2. (I do) Write "the intersection of sets A and B" using the following notation:
a. Set-builder notation
b. Symbolized notation
3. (I do) Write "the complement of set A" using the following notation:
a. Set-builder notation
b. Symbolized notation
4. (We do) Consider the sets $U=\{1,2,3,4,5,6,7\}, A=\{1,3,5\}, B=\{3,6\}$ and $C=\{2$, $4\}$.
a. Create a Venn diagram that represents the sets.
b. C'

c. $A \cup B$
d. $\mathrm{A} \cap \mathrm{B}$
e. $\mathrm{A} \cap \mathrm{C}$
f. $(A \cap B)^{\prime}$
g. $(A \cup B) \cup C$
5. (They do) Use the set of real numbers as the replacement set to find the solution set for $x \geq-1$ and $x<4$.
6. (They do) Use the set of real numbers as the replacement set to find the solution set for $x \geq 4$ or $x<-1$.

-Lesson 1-3 Independent Practice/Lesson Check-

Exercises

Refer to the diagram. Find the sets named by listing the members.

1. A^{\prime} \qquad 2. $A \cap B$ \qquad 3. $A \cup B$ \qquad

Graph the solution sets for each compound inequality. Then describe the solution set in two ways using roster notation and set-builder notation.
4. $x>2$ or $x \leq-1$

Graph of A if $A=x>2$ Graph of B if $B=x \leq-1$ Graph of $A \cup B$: $x>2$ or $x \leq-1$

Roster notation: \qquad

Set-builder notation: \qquad
5. $x \geq-3$ and $x<0$

Graph of A if
$A=x \geq-3$ Graph of B if $B=x<0$

Graph of $A \cap B$: $x \geq-3$ and $x<0$

Roster notation: \qquad

Set-builder notation: \qquad
\qquad

Name: \qquad Date: \qquad Period: \qquad

1-7 Distributive Property \& Properties of Exponents

Standard

- B.N.Q.A. 3 Solve problems involving squares, square roots of numbers, cubes, and cube roots of number.

Objectives

- SWBAT use properties of exponents IOT evaluate and simplify expressions.
- SWBAT will use the distributive property IOT evaluate and simplify expressions.

Key Concepts

\qquad - a number written in this form has a base and an exponent.
\qquad - tells what factor is being multiplied.
\qquad - tells how many equal factors there are.

Distributive Property $a(b+c)=a b+a c$
Transitive Property If $a=b$, and $b=c$, then $a=c$.
Reflexive Property $a=a$, any number is equal to itself
Substitution Property If $a=b$, then b can be substituted for a in any statement.

Symmetric Property If $a=b$, then $b=a$

Properties of Exponents $a^{m} a^{n}=a^{m+n}$

$$
\begin{aligned}
& \frac{a^{m}}{a^{n}}=a^{m-n} \\
& (a b)^{m}=a^{m} b^{m} \\
& \left(a^{m}\right)^{n}=a^{m n}
\end{aligned}
$$

Examples

1. (I do) Use the distributive Property to find the product of $16 \cdot 15-16 \cdot 5$.
2. (I do) Evaluate the expression. Let $a=-2$ and $b=3$
a. a^{2}
b. $-a^{2}$
c. $a b^{2}$
3. (We do) Simplify.
a. $x^{2} \cdot x^{7}$
b. $\left(a^{3}\right)^{5}$
c. $\left(5^{2} \cdot n\right)^{2}$
4. (We do) Simplify
a. $\frac{a^{7}}{a^{2}}$
b. $\left(\frac{t}{3}\right)^{4}$
c. $\left(\frac{x^{2}}{3}\right)^{4}$
d. $\left(\frac{c^{5}}{c^{2}}\right)^{3}$

Exercises

Use the distributive property to find each product.

1. $0.8(10-0.9)$
2. $3\left(\frac{1}{6}-\frac{5}{12}\right)$
3. $4\left(1 \frac{3}{4}\right)$
4. $-0.9(10)-0.9(4)$

Evaluate each expression when $x=-0.1$ and $y=1.5$.
5. x^{3}
6. $x y^{2}$
7. $(y-x)^{2}$
8. $y^{2} \div-0.75$

Simplify.
9. $\left(x^{3}\right)^{4}$
10. $a^{4} \cdot a^{2}$
11. $b^{3} \div b^{2} ; b \neq 0$
12. $\left(a^{2} b^{3}\right)^{2}$
13. x^{0}
14. $x^{5} \div x^{2} ; x \neq 0$
15. $\left(7^{4} \cdot a^{2}\right)^{2}$
16. $x^{2} \cdot x^{5}$

Name: \qquad Date: \qquad Period: \qquad

1-8 Exponents \& Scientific Notation

Standards

- B.N.Q.A. 3 Solve problems involving squares, square roots of numbers, cubes, and cube roots of number
- B.A.SSE.A. 1 Use properties of multiplication and division to solve problems containing scientific notation.

Objectives

- SWBAT use properties of exponents IOT simplify and evaluate variable expressions with negative exponents.
- SWBAT write numbers in scientific notation IOT multiply and divide numbers expressed in scientific notation.

Key Concepts

\qquad -derived from the quotient rule and used in scientific notation
\qquad - uses powers of 10 to write large and small numbers more concisely.

Examples

1. (I do) Simplify each expression using the properties of exponent.
a. $a^{9} \div a^{-5}$
b. $x^{4} \cdot x^{-3}$
c. $\left(a^{3}\right)^{-5}$
2. (We do) Evaluate.
a. a^{-5} when $a=2$
b. $p q^{3}$ when $p=2$ and $q=-2$
3. (We do) Write the number in scientific notation.
a. 6,789,000
b. 0.000526
c. 0.006052
4. (We do) Write the number in standard form.
a. 3.6×10^{5}
b. 4.3×10^{-4}
c. 2.095×10^{-7}
5. (They do) The mass of an oxygen atom is 2.66×10^{-23} grams. What is the approximate mass of 1 billion oxygen atoms?

Lesson 1-8 Independent Practice/Lesson Check--

Exercises

Simplify each expression, using properties of exponents.

1. $\left(x^{4}\right)^{-2}$
2. $\left(-x^{2}\right)^{2}$
3. $x^{-6} \cdot x^{6} ; x \neq 0$
4. $b^{7} \div b^{-8}$
5. $m^{12} \div m^{16}$
6. $c^{-2} \div c^{8}$
7. $a^{-5} \cdot a^{-6}$
8. $r^{8} \cdot r^{-5}$

Write each number in scientific notation.
9. 42,093
10. $729,000,000$
11. 0.0074
12. 0.000621
\qquad
\qquad

Write each number in standard form.
13. $7.3 \cdot 10^{3}$
14. $6.52 \cdot 10^{-3}$
15. $4.21 \cdot 10^{4}$
16. $9.1 \cdot 10^{-4}$

