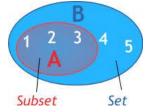
Name:

Date: Period:

1-1 The Language of Mathematics

Standard


• B.N.RN.A.1. Use rational and irrational numbers in calculations and in real world context.

Objective

• SWBAT develop a thorough understanding of sets and set notation IOT understand set notation and how to use symbols to describe sets.

_____- a collection of distinct items.

Key Concepts

sentence true.

Examples

- 1. (I do) Write " the set of natural numbers" using the following notation: a. set-builder notation
 - b. roster notation

- 2. (I do) Write the following using symbols
 - a. set A contains elements 2, 4, 6 and 8.
 - b. set B is a subset of set A.
 - c. *x* is an element of set C.
 - d. 12 is not an element of {1, 3, 5, 7}.
 - e. set D is the null set or empty set.
- 3. (We do) Rewrite $\{0, r\} \in \{r\}$ so that it is correct.
- 4. (They do) Determine all possible subsets of the set {a, b, c}.
- 5. (They do) Determine which of the values -2 and 4 are solutions to the equation 4x + 3 = 19.
- 6. (They do) Josh's earnings equaled the sum of Aimee's and twice Nora's earnings. Josh earned \$104 and Aimee earned \$32. Using the equation 104 = 32 + 2x and the replacement set {32, 36, 40} for *x*. Find the amount Nora earned.

-----Lesson 1-1 Independent Practice/Lesson Check------

Use the following sets $A = \{2, 4\}, B = \emptyset, C = \{2, 4, 6, 8, 10\}, \text{ and } D = \{-2, -1, 0, 1, 2\}$ for Exercises 1–8. Tell if each statement is true or false. **1.** $1 \in D$ _____ **2.** $1 \in A$ _____ **3.** $-2 \in D$ ____ **4.** $-3 \in D$ _____ **5.** $A \subset C$ ____ **6.** $B \subset D$ _____ **7.** $C \subset A$ ____ **8.** $B \subset A$ _____ **9.** Write all the possible subsets of the set $\{x, y\}$. Define each set using roster notation. **10.** odd numbers greater than 5 ______ **11.** even negative numbers with a value less than -3

 Which of the given values is a solution of each equation?

 12. 6 - m = 4; -2, 2

 13. 4n + 6 = 30; 6, 9

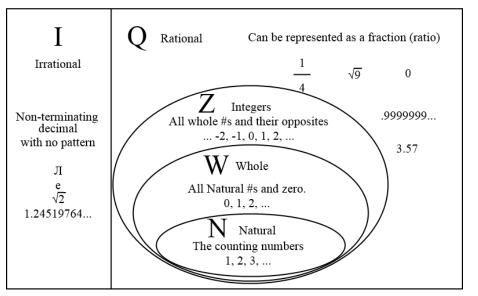
Name:_____

1-2 Real Numbers

Standard

• B.N.RN.A.1. Use rational and irrational numbers in calculations and in real world context.

Objectives


- SWBAT develop a thorough understanding of both rational and irrational numbers IOT make both historical and concrete connections between irrational numbers and the real world.
- SWBAT identify and graph real numbers IOT perform operations with them.

Key Concepts

_____- The number on the number line corresponding to a point.

____- The distance from zero to a given point.

Real Numbers

Examples

- 1. (I do) To which set does each number belong:
 - a. 7 b. -0.8 c. $\sqrt{29}$ d. $\sqrt{144}$

2. (I do) Graph the numbers $-4, \frac{3}{2}, \sqrt{5}, -\frac{12}{5}$, and π on the number line.

3. (We do) Graph the following sets on the number line.

	a.	the set of integers from -2 to 3, inclusive	
	b.	the set of real numbers from -2 to 3 inclusiv	e
	c.	{all real numbers less than or equal to 2}	← →
	d.	{all real numbers greater than -2}	<→
4.		The mey do) Evaluate the expression when $m = -m$ b. $-(-m)$ c.	

-----Lesson 1-2 Independent Practice/Lesson Check-----

Exercises

Tell whether each statement is true or false.

- **1.** $\sqrt{2}$ is a rational number. _____ **2.** -42 is an integer. _____
- **3.** 0 is a natural number. _____ **4.** $-\frac{3}{5}$ is an integer. _____
- 5. 213 is a whole number. _____ 6. 0.31131113 is an irrational number. _____

Graph each set of numbers on a number line.

Evaluate each expression where b = -0.8.

 9. -b _____
 10. -(-b) _____
 11. |b| _____

 12. -|b| _____
 13. |-b| _____
 14. -|-b| _____

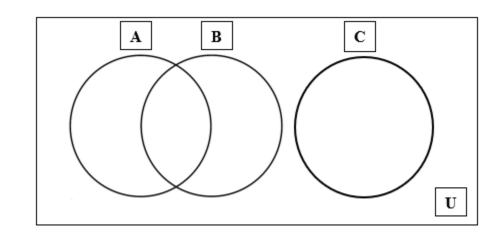
1-3 Union & Intersection of Sets

Standard

• B.N.RN.A.1. Use rational and irrational numbers in calculations and in real world context.

Objective

• SWBAT use math symbols to describe sets IOT describe the relationships among sets and elements of sets.


Key Concepts

	is formed by joining al	ll the elements of one set with those of
others.		
	is formed with the eler	nents that are in common in one or
more sets.		
	uses circles inside a rec	tangle to represent sets and set
operations.		
	or	typically labeled as set U or
represented by a rectangle	e in a Venn diagram.	
	the subset of all eleme	nts of U that ae not elements of set A.
	two sets whose interse	ction is empty.
	an inequality that com	bines two inequalities.

Examples

- 1. (I do) Write "the union of sets A and B" using the following notation:
 - a. Set-builder notation
 - b. Symbolized notation

- (I do) Write "the intersection of sets A and B" using the following notation:
 a. Set-builder notation
 - b. Symbolized notation
- 3. (I do) Write "the complement of set A" using the following notation:
 - a. Set-builder notation
 - b. Symbolized notation
- 4. (We do) Consider the sets U = {1, 2, 3, 4, 5, 6, 7}, A = {1, 3, 5}, B = {3, 6} and C = {2, 4}.
 - a. Create a Venn diagram that represents the sets.
 - b. C'

c. $A \cup B$

d. $A \cap B$

e. $A \cap C$ f. $(A \cap B)'$

g. $(A \cup B) \cup C$

- 5. (They do) Use the set of real numbers as the replacement set to find the solution set for $x \ge -1$ and x < 4.
- 6. (They do) Use the set of real numbers as the replacement set to find the solution set for $x \ge 4$ or x < -1.

-----Lesson 1-3 Independent Practice/Lesson Check-----

Refer to the diagram. Find the sets named by listing the members. **1.** A' _____ **2.** $A \cap B$ _____ **3.** $A \cup B$ _____ **1.** $A \cup B$ _____ **3.** $A \cup B$ _____ **3.** $A \cup B$ _____ **3.** $A \cup B$ _____ **5.** $a = 10^{-7} B$ _____ **3.** $a = 10^{-7} B$ _____ **3.** $a = 10^{-7} B$ _____ **5.** $a = 10^{-7} B$ ______ **5.** $a = 10^{-7} B$ _______ **5.** $a = 10^{-7} B$

4. x > 2 or $x \le -1$ 5. $x \ge -3$ and x < 0Graph of A if Graph of A if -3 -2 -1 0 2 A = x > 20 1 2 3 $A = x \ge -3$ -1 Graph of B if Graph of B if -1 0 -3 -2 -1 0 $B = x \leq -1$ B = x < 0Graph of $A \cup B$: Graph of $A \cap B$: -1 0 1 2 3 -3 -2 -1 0 2 x > 2 or $x \le -1$ $x \ge -3$ and x < 0Roster notation: Roster notation: Set-builder notation: Set-builder notation:_____

_Date:_____Period:_____

1-7 Distributive Property & Properties of Exponents

Standard

• B.N.Q.A.3 Solve problems involving squares, square roots of numbers, cubes, and cube roots of number.

Objectives

- SWBAT use properties of exponents IOT evaluate and simplify expressions.
- SWBAT will use the distributive property IOT evaluate and simplify expressions.

Key Concepts

_____- a number written in this form has a base and an exponent.

_____- tells what factor is being multiplied.

_____- tells how many equal factors there are.

Distributive Property a(b + c) = ab + ac

Transitive Property If a = b, and b = c, then a = c.

Reflexive Property a = a, any number is equal to itself

Substitution Property If a = b, then b can be substituted for a in any statement.

Symmetric Property If a = b, then b = a

Properties of Exponents $a^m a^n = a^{m+n}$

$$\frac{a^{m}}{a^{n}} = a^{m-n}$$
$$(ab)^{m} = a^{m}b^{m}$$
$$(a^{m})^{n} = a^{mn}$$

Examples

1. (I do) Use the distributive Property to find the product of $16 \cdot 15 - 16 \cdot 5$.

2. (I do) Evaluate the expression. Let a = -2 and b = 3a. a^2 b. $-a^2$ c. ab^2

3. (We do) Simplify.
a.
$$x^2 \cdot x^7$$
 b. $(a^3)^5$ c. $(5^2 \cdot n)^2$

4. (We do) Simplify a. $\frac{a^7}{a^2}$ b. $(\frac{t}{3})^4$ c. $(\frac{x^2}{3})^4$ d. $(\frac{c^5}{c^2})^3$

-----Lesson 1-7 Independent Practice/Lesson Check------

4. -0.9(10) - 0.9(4)
8. $y^2 \div -0.75$
12. $(a^2b^3)^2$
16. $x^2 \cdot x^5$

1-8 Exponents & Scientific Notation

Standards

- B.N.Q.A.3 Solve problems involving squares, square roots of numbers, cubes, and cube roots of number
- B.A.SSE.A.1 Use properties of multiplication and division to solve problems containing scientific notation.

Objectives

- SWBAT use properties of exponents IOT simplify and evaluate variable expressions with negative exponents.
- SWBAT write numbers in scientific notation IOT multiply and divide numbers expressed in scientific notation.

Key Concepts

_____-derived from the quotient rule and used in scientific notation ______- uses powers of 10 to write large and small numbers more concisely.

Examples

1. (I do) Simplify each expression using the properties of exponent. a. $a^9 \div a^{-5}$ b. $x^4 \cdot x^{-3}$ c. $(a^3)^{-5}$

2. (We do) Evaluate. a. a^{-5} when a = 2

```
b. pq^3 when p = 2 and q = -2
```

3. (We do) Write the number in scientific notation.a. 6,789,000b. 0.000526c. 0.006052

- 4. (We do) Write the number in standard form. a. 3.6×10^5 b. 4.3×10^{-4} c. 2.095×10^{-7}
- 5. (They do) The mass of an oxygen atom is 2.66×10^{-23} grams. What is the approximate mass of 1 billion oxygen atoms?

	of exponents.	
2. $(-x^2)^2$	3. $x^{-6} \cdot x^{6}; x \neq 0$	4. $b^7 \div b^{-8}$
6. $c^{-2} \div c^{8}$	7. $a^{-5} \cdot a^{-6}$	8. $r^{8} \cdot r^{-5}$
r in scientific notation.		
10. 729,000,000	11. 0.0074	12. 0.000621
r in standard iorin.		
	6. $c^{-2} \div c^{8}$	6. $c^{-2} \div c^8$ 7. $a^{-5} \cdot a^{-6}$ r in scientific notation. 10. 729,000,000 11. 0.0074