Name: \qquad Date: \qquad Period: \qquad

6-0 Properties of Exponents

Standards

A2.N.RN.A. 1 (formerly N-RN.A.1) Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.
A2.N.RN.A. 2 (formerly N-RN.A.2) Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Key Concepts

Properties of Exponents- Assume that no denominator is equal to zero and m and n are integers.

1. $a^{0}=1$
2. $a^{-n}=\frac{1}{a^{n}}, a \neq 0$
3. $a^{m} \cdot a^{n}=a^{m+n}$
4. $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$
5. $(a b)^{n}=a^{n} b^{n}$
6. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, b \neq 0$
7. $\left(a^{m}\right)^{n}=a^{m n}$

Examples

1. Simplify each expression using only positive exponents.
a. $\left(3 a^{4}\right)\left(-2 a^{-5}\right)$
b. $\left(-3 x^{-3} y^{4}\right)^{2}$
c. $\frac{\left(x^{2} y\right)^{0}}{2 x^{-3}}$
d. $\frac{6 a^{3} b^{-2} c^{5}}{a b^{-3} c^{3}}$
e. $\left(\frac{2 x^{2} y^{-2}}{3}\right)^{3}$
f. $\left(\frac{3 r^{-2} s^{3} t^{0}}{3 r s}\right)^{-3}$

You do Practice 6-0: Complete your assignment on a separate sheet of paper. Show all work.

1. Simplify. Your exponents should only include positive exponents.
a. $\left(x^{-2} y^{-3}\right)^{4}$
b. $\left(x^{4}\right)^{-3}\left(2 x^{4}\right)$
c. $\frac{2 y^{3} \cdot 3 x y^{3}}{3 x^{2} y^{4}}$
d. $\frac{x^{3} y^{3} z^{2}}{3 x^{2} y^{4}}$
e. $\frac{3 x^{2} y^{2}}{2 x^{-1}\left(4 x y^{2}\right)}$
f. $\frac{2 x^{2} y^{4} \cdot 4 x^{2} y^{4} \cdot 3 x}{3 x^{-3} y^{2}}$

6-1 Roots and Radical Expressions

Standards

A2.N.RN.A. 1 (formerly N-RN.A.1) Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.
A2.N.RN.A. 2 (formerly N-RN.A.2) Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Key Concepts

\qquad - For any real numbers a and b, and any positive integer n, if $a^{n}=b$, then a is an nth root of b.

- If n is \qquad there is \qquad real nth root.

index radical sign

- If n is \qquad , there are \qquad real nth roots.
\qquad - the number under the radical.
\qquad - the degree of the root.

radicand
\qquad - the positive root when the number has
real roots.

Examples

1. (I do) Find all real cube roots.
a. 0.027
b. -125
c. $\frac{1}{64}$
2. (We do) Find all real fourth roots.
a. 625
b. -0.0016
c. $\frac{81}{625}$
3. (We do) What is each principal real number root?
a. $\sqrt[3]{-27}$
b. $\sqrt{0.09}$
c. $\sqrt[4]{-16}$
d. $\sqrt{(-3)^{2}}$
4. (We do) Simplify each radical expression. Use absolute value symbols as needed.
a. $\sqrt{16 x^{8}}$
b. $\sqrt[3]{27 a^{3} b^{3}}$
c. $\sqrt[4]{x^{16} y^{4}}$
d. $\sqrt[4]{81(x+y)^{8}}$
5. (They do) Find all real solutions.
a. $x^{2}=81$
b. $x^{3}=27$
c. $x^{4}=\frac{256}{625}$
d. $x^{4}=-16$
6. (They do) The voltage V of an audio system's speaker can be represented by $\mathrm{V}=4 \sqrt{P}, \mathrm{P}$ is the power of the speaker.
a. An engineer wants to design a speaker with 400 watts of power. What would the voltage be?
b. Casey wants to buy an audio system's speaker with a voltage of 100 . What would be the power of the speaker in watts?

(You do) Practice 6-1: Complete your assignment on a separate sheet of paper. Show work.

1. Find all the real square roots.
a. 625
b. $\frac{16}{81}$
2. Find all the real cube roots.
a. -216
b. 0.027
3. Find all the real fourth roots.
a. -1296
b. 0.2401
4. Find each principal real number root.
a. $\sqrt{400}$
b. $-\sqrt[4]{256}$
c. $\sqrt[3]{-729}$
5. Simplify each radical expression. Use absolute value symbols when needed.
a. $\sqrt{25 x^{6}}$
b. $\sqrt[3]{343 x^{9} y^{12}}$
c. $\sqrt[4]{16 x^{16} y^{20}}$
6. Reasoning. Explain how you know whether or not to include the absolute value symbol on your root.
