Name:	Date:	Period:

6-0 Properties of Exponents

Standards

A2.N.RN.A.1 (formerly N-RN.A.1) Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

A2.N.RN.A.2 (formerly N-RN.A.2) Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Key Concepts

Properties of Exponents- Assume that no denominator is equal to zero and *m* and *n* are integers.

1. $a^{0} = 1$ 2. $a^{-n} = \frac{1}{a^{n}}, a \neq 0$ 3. $a^{m} \cdot a^{n} = a^{m+n}$ 4. $\frac{a^{m}}{a^{n}} = a^{m-n}, a \neq 0$ 5. $(ab)^{n} = a^{n}b^{n}$ 6. $(\frac{a}{b})^{n} = \frac{a^{n}}{b^{n}}, b \neq 0$ 7. $(a^{m})^{n} = a^{mn}$

Examples

- 1. Simplify each expression using only positive exponents.
 - a. $(3a^4)(-2a^{-5})$ b. $(-3x^{-3}y^4)^2$ c. $\frac{(x^2y)^0}{2x^{-3}}$

d.
$$\frac{6a^3b^{-2}c^5}{ab^{-3}c^3}$$
 e. $(\frac{2x^2y^{-2}}{3})^3$ f. $(\frac{3r^{-2}s^3t^0}{3rs})^{-3}$

You do Practice 6-0: Complete your assignment on a separate sheet of paper. Show all work.

1. Simplify. Your exponents should only include positive exponents.

a.
$$(x^{-2}y^{-3})^4$$
 b. $(x^4)^{-3}(2x^4)$ c. $\frac{2y^3 \cdot 3xy^3}{3x^2y^4}$

d.
$$\frac{x^3y^3z^2}{3x^2y^4}$$
 e. $\frac{3x^2y^2}{2x^{-1}(4xy^2)}$ f. $\frac{2x^2y^4 \cdot 4x^2y^4 \cdot 3x}{3x^{-3}y^2}$

6-1 Roots and Radical Expressions

Standards

A2.N.RN.A.1 (formerly N-RN.A.1) Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents.

A2.N.RN.A.2 (formerly N-RN.A.2) Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Key Concepts

- For any real numbers *a* and *b*, and any positive integer *n*, if $a^n = b$, then *a* is an *n*th root of *b*.

•	If <i>n</i> is	<u>,</u> there is	real <i>n</i> th root.	index	adical sign
•	If <i>n</i> 18	, there are	real <i>n</i> th roots.	n	- \
		- the number	under the radical.	Va	1
	th	ne degree of th	e root.	radica	nd
		- the positive	root when the nur	nber has	two
real ro	oots.				
				$\underline{\qquad} - \sqrt[n]{a^n} = \begin{cases} a & \text{if } n \\ a & \text{if } n \end{cases}$	is odd is even
Examj	ples				
1.	(I do) Find al	l real cube root	s.		
	a. 0.027		b125	c. $\frac{1}{64}$	
2.	(We do) Find	all real fourth	roots.		
	a. 625		b0.0016	C. $\frac{81}{625}$	
3.	(We do) Wha	t is each princi	pal real number root	t?	
	a. $\sqrt[3]{-27}$	ł	b. $\sqrt{0.09}$	c. ∜ <u>−16</u>	d. $\sqrt{(-3)^2}$
4.	(We do) Simj	olify each radic	al expression. Use a	bsolute value symbols as	needed.
	a. $\sqrt{16x^8}$	b.	$\sqrt[3]{27a^3b^3}$	c. $\sqrt[4]{x^{16}y^4}$	d. $\sqrt[4]{81(x+y)^8}$
5.	(They do) Fir	nd all real solut	ions.		
	a. $x^2 = 81$	b.	$x^3 = 27$	c. $x^4 = \frac{256}{625}$	d. $x^4 = -16$

- 6. (They do) The voltage V of an audio system's speaker can be represented by $V = 4\sqrt{P}$, P is the power of the speaker.
 - a. An engineer wants to design a speaker with 400 watts of power. What would the voltage be?
 - b. Casey wants to buy an audio system's speaker with a voltage of 100. What would be the power of the speaker in watts?

(You do) Practice 6-1: Complete your assignment on a separate sheet of paper. Show work.

- **1.** Find all the real square roots.
 - a. 625 b. $\frac{16}{81}$
- 2. Find all the real cube roots.a. -216b. 0.027
- 3. Find all the real fourth roots.a. -1296b. 0.2401
- **4.** Find each principal real number root. **a.** $\sqrt{400}$ **b.** $-\sqrt[4]{256}$ **c.** $\sqrt[3]{-729}$
- 5. Simplify each radical expression. Use absolute value symbols when needed. a. $\sqrt{25x^6}$ b. $\sqrt[3]{343x^9y^{12}}$ c. $\sqrt[4]{16x^{16}y^{20}}$
- **6. Reasoning.** Explain how you know whether or not to include the absolute value symbol on your root.