Name: Date: \qquad Period: \qquad
Standard A2.A.APR.A. 2 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.

Tier 1 (up to 70 points) Complete \#1-10 (7 points each)
Tier 2 (up to 88 points) Complete \#1-13 Do not move up to Tier 2 if you have not completed all of Tier 1. (6 points each)

Tier 3 (up to 100 points) Complete \#1-15 Do not move up to Tier 3 if you have not completed all of Tier $1 \&$ Tier 2. (6 points each)

Find all zeros. Factor when possible.

1. $f(x)=(2 x-1)(x-5)$
2. $f(x)=x(5 x-2)\left(x^{2}+1\right)$
3. $f(x)=x^{3}+8$
4. $f(x)=x^{4}-x^{2}-30$
5. $f(x)=2 x^{3}+x^{2}-10 x-5$
6. Write a polynomial function of least degree with integral coefficients that has zeros 3,2 and -2.
7. Divide $\left(x^{3}-8 x^{2}+17 x-10\right)$ by $(x-5)$ using synthetic division.
8. Find a polynomial function whose graph passes through $(0,5),(2,10)$ and $(1,4)$.

Find all zeros.
9. $f(x)=x(x+2)(x-2)\left(3 x^{2}-4\right)$
10. $f(x)=(2 x+5)\left(x^{2}-2 x-5\right)$
11. Determine whether $(x+2)$ is a factor of $x^{3}+x^{2}-16 x-16$. Explain.
12. Use synthetic division to completely factor $x^{3}+2 x^{2}-5 x-6$ given that $(x+1)$ is a factor.
13. Write a polynomial function of least degree with rational coefficients that has roots $-4 i$ and $6-i$.
14. Find a linear, quadratic and cubic model for the data. Round coefficients to the nearest hundredth. Which model best fits the data? Explain.

x	3	8	15	21
y	7	11	26	44

15. The expression $V(x)=x^{3}-13 x+12$ represents the volume of a rectangular safe in cubic feet. The length of the safe is $x+4$. What linear expressions with integer coefficients could represent the other dimensions of the safe? Assume that the height is greater than the width.
